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Abstract—This paper considers the problem of identifying (estimating) faults in systems de-
scribed by linear models under exogenous disturbances. It is solved using optimal control
methods; in comparison with sliding mode observers, they avoid high-frequency switching. The
solution method proposed below involves a reduced model of the original system that is sen-
sitive to faults and insensitive to disturbances. The corresponding theory is illustrated by an
example.
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1. INTRODUCTION

For the last two decades, the problem of fault identification has been solved based on sliding
mode observers [1–7]. In the works cited, certain constraints were imposed on the system under
consideration. The most typical ones include the matching condition and the minimum phase
property of the system. This restricts the class of systems for which such observers can be con-
structed. In addition, the implementation of such observers implies high-frequency switching and,
consequently, high-frequency data exchange in the control system, which is not always practicable.
The method based on the optimal control theory proposed below is free from this disadvantage.

Consider control systems described by the linear model

ẋ(t) = Ax(t) +Bu(t) +Dd(t) + Lρ(t), x(t0) = x0,

y(t) = Cx(t)
(1.1)

with the following notations: x ∈ R
n is the state vector, u ∈ R

m is the control vector, and y ∈ R
l

is the output; A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×n, D ∈ R

n×q, and L ∈ R
n×s are known constant

matrices; the vector function d(t) ∈ R
q describes faults, i.e., d(t) = 0 if there are no faults, and d(t)

becomes an unknown time-varying function otherwise; finally, ρ(t) ∈ R
s is an unknown time-varying

function of exogenous disturbances affecting the system.

In this paper, the problem is to design an observer for estimating the function d(t). In contrast
to the conventional approach, the solution proposed below is based on optimal control methods.
By analogy with [5–7], the problem is solved not for the original system but for its reduced model
insensitive to disturbances. Such a model has a smaller dimension than the original system.
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2. BUILDING THE REDUCED MODEL

The reduced model has the form

ẋ∗(t) = A∗x∗(t) +B∗u(t) + J∗y(t) +D∗d(t),

y∗(t) = C∗x∗(t),
(2.1)

where x∗(t) ∈ R
k is the state vector; A∗, B∗, J∗, C∗, and D∗ are matrices of compatible dimensions

to be determined. By analogy with [5–7], the matrices A∗ and C∗ are found in the canonical form

A∗ =

⎛
⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 0

⎞
⎟⎟⎟⎠ , C∗ = ( 1 0 0 . . . 0 ). (2.2)

Also following [5–7], we suppose the existence of matrices Φ and R∗ such that x∗(t) = Φx(t),
y∗(t) = R∗y(t), and

ΦA = A∗Φ+ J∗C, R∗C = C∗Φ, ΦB = B∗, ΦD = D∗. (2.3)

In view of the canonical form (2.2), equations (2.3) imply [5–7] the equations

Φ1 = R∗C, ΦiA = Φi+1 + J∗iC, i = 2, . . . , k − 1,

ΦkA = J∗kC,
(2.4)

where Φi and J∗i are the ith rows of the matrices Φ and J∗, respectively, i = 1, . . . , k. The matrix R∗
must be chosen so that D∗ �= 0. The corresponding procedure will be given below.

Assumption 1. Im(D) �⊂Ker(V (n)), where

V (n) =

⎛
⎜⎜⎜⎝

C
CA
. . .

CAn−l

⎞
⎟⎟⎟⎠

is the observability matrix.

Assumption 1 holds if system (1.1) is observable: in this case, Ker(V (n)) = 0 and, consequently,
V (n)D �= 0. Let p be the smallest integer satisfying CApD �= 0 and j be an integer for which
CjA

pD �= 0. It can be demonstrated that (2.4) implies Φ = QV (n) for some matrix Q, and then
we obtain D∗ = ΦD �= 0 from CjA

pD �= 0. According to the aforesaid, the pth derivative of the
variable yj is sensitive to faults: this derivative will change value if a fault occurs. Also, obviously,
if the jth position of the matrix R∗ is nonzero, model (2.1) with this matrix will be sensitive to
faults.

As was shown in [5–7], insensitivity to exogenous disturbances holds if ΦL = 0. Together
with (2.4), this condition can be reduced to the equation

( R∗ −J∗1 . . . −J∗k )(W (k) L(k)) = 0, (2.5)

where

W (k) =

⎛
⎜⎜⎜⎝

CAk

CAk−1

. . .
C

⎞
⎟⎟⎟⎠ , L(k) =

⎛
⎜⎜⎜⎝

CL CAL . . . CAk−1L
0 CL . . . CAk−2L

. . .
0 0 . . . 0

⎞
⎟⎟⎟⎠ .

Equation (2.5) has a solution under

rank (W (k) L(k)) < l(k + 1).
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This inequality serves to determine the minimal dimension k > p; equation (2.5), to determine the
row ( R∗ −J∗1 . . . −J∗k ). If the jth position of the matrix R∗ is nonzero, then the matrices Φ,
B∗, and D∗ are obtained using (2.3) and (2.4). Otherwise, it is necessary to find another solution
of equation (2.5).

The stability of the model is ensured by feedback on the residual signal r∗(t) = R∗y(t)− y∗(t):

ẋ∗(t) = A∗x∗(t) +B∗u(t) + J∗y(t) +D∗d(t) +Kr∗(t), (2.6)

where the matrix K has the form K = ( k1 k2 . . . kk )T. The coefficients k1, k2, . . . , kk are de-
termined from given eigenvalues λ1, λ2, . . . , λk:

k1 = −(λ1 + λ2 + . . .+ λk),

k2 = λ1λ2 + λ1λ3 + . . .+ λk−1λk,

. . . ,

kk = (−1)kλ1λ2 . . . λk.

Consider the expression for the residual r∗(t), equation (2.6) can be transformed into

ẋ∗(t) = (A∗ −KC∗)x∗(t) +B∗u(t) + (J∗ +KR∗)y(t) +D∗d(t).

3. AN AUXILIARY OPTIMAL CONTROL PROBLEM

As has been emphasized, the problem of fault identification is solved using optimal control
methods. Consider the corresponding problem for the system

ż(t) = (A∗ −KC∗)z(t) +B∗u(t) + (J∗ +KR∗)y(t) +D∗w(t), z(t0) = Φx0,
(3.1)

yz(t) = C∗z(t),

where the auxiliary control variable w(t) plays the role of the unknown function d(t). It is chosen
to transfer system (3.1) from the state z(t0) to a target state with the output yz(tf ) such that
yz(tf ) → y∗(tf ) as tf → ∞ and

J =
1

2

∞∫
t0

(
eTy Qey + wTRw

)
dt → min

v
. (3.2)

Here, ey(t) = yz(t)− y∗(t) denotes the residual, and Q and R ∈ R
q×q are a positive number and

a positive definite matrix, respectively. The relation yz(tf ) → y∗(tf ), tf → ∞, is understood as
convergence in the Euclidean norm: ‖yz(tf )− y∗(tf )‖ → 0 as tf → ∞. The convergence of other
time-varying functions in this paper is interpreted by analogy.

The identification problem is to construct the optimal control w(t) in the sense of the perfor-
mance criterion (3.2) such that yz(t) → y∗(t) and w(t) → d(t) as t → ∞. The criterion (3.2) must
be minimized for a sufficiently large value of the constant Q, in particular, Q = 1020 in the example
below. This practically ensures the property ey(t) → 0 as t → ∞. With this in mind, we denote
by ey∗ the asymptote for ey(t). According to the previous considerations, ey∗ = 0 can be taken with
a sufficient degree of accuracy.

Introducing the error vector e(t) = z(t)− x∗(t) ∈ Rk, we write the corresponding equation

ė(t) = A∗e(t) +D∗(w(t) − d(t))−Key(t)

= (A∗ −KC∗)e(t) +D∗(w(t) − d(t)), e(t0) = 0,

ey(t) = C∗e(t).

(3.3)
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Assumption 2. System (3.3) is strongly observable.

Strong observability means the absence of invariant zeros. In other words, there exist no s for
which

rank (R(s)) < k + rank

(
−D∗
0

)
,

where R(s) is the Rosenbrock matrix [8, 9]:

R(s) =

(
sI − (A∗ −KC∗) −D∗

C∗ 0

)
.

Theorem 1. If system (3.3) is strongly observable, then ey(t) → 0 implies w(t) → d(t) as t → ∞.

Proof. Let H(s) be the transfer function of system (3.3):

Ey(s) = H(s)(W (s)−D(s)), (3.4)

where Ey(s), W (s), and D(s) are the Laplace images of the functions ey, w(t), and d(t), and
s denotes the complex variable. Since ey∗ = 0, it follows that Ey(s) = 0. System (3.3) has no
invariant zeroes; hence, for all s, the function H(s) is nonzero and, consequently, W (s) = D(s).
According to [10], functions with identical images coincide for all t > 0 except a set of measure
zero. Therefore, w(t) and d(t) coincide for all t > 0 except a set of measure zero. The asymptotic
convergence of the function ey(t) will be written as w(t) → d(t).

Clearly, the converse is true: if the system is not strongly observable, its transfer function will
have a zero, H(s) = 0 for some s. Then equality (3.4) will hold for d(t) + eat with s = a. In this
case, the fault will be reconstructed within the exponent.

4. SOLUTION OF THE AUXILIARY PROBLEM

Here is its solution. For problem (3.1) and (3.2), the Hamiltonian has the form

H =
1

2
(z − x∗)

TCT
∗ QC∗(z − x∗) +

1

2
wTRw + λT(A∗z + J∗y +D∗w +B∗u),

where A∗ = A∗ −KC∗ and J∗ = J∗ +KR∗. The optimal control law is given by

∂H

∂w
= 0 ⇒ Rw +DT

∗ λ = 0 ⇒ w = −R−1DT
∗ λ. (4.1)

The state and conjugate variables satisfy the equations

ż(t) =
∂H

∂λ
= A∗z + J∗y +D∗w +B∗u = A∗z + J∗y −D∗R

−1DT
∗ λ+B∗u,

z(t0) = Φx0,

λ̇(t) =
∂H

∂z
= −A

T
∗ λ− CT

∗ QC∗z + CT
∗ Qy∗.

We write the latter relations in matrix form:(
ż(t)

λ̇(t)

)
=

(
A∗ −D∗R−1DT

∗
−CT

∗ QC∗ −A
T
∗

)(
z(t)
λ(t)

)
+

(
B∗
0

)
u(t) +

(
J∗y(t)

CT
∗ Qy∗(t)

)
,

z(t0) = Φx0.

(4.2)

Equation (4.2) can be considered a diagnostic observer. By integrating (4.2) in forward time, it
is possible to find and then reconstruct based on (4.1) the function describing the fault:

w(t) = −R−1DT
∗ λ(t) → d(t). (4.3)
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An open issue is the choice of initial conditions for the conjugate variable when integrating (4.2).
Since the initial conditions are unknown, we introduce the following Riccati transformation [10] to
find the control law:

z(t) = M(t)λ(t) + g(t), (4.4)

where M(t) and g(t) are a nonsingular matrix and some vector function, respectively. Differenti-
ating (4.4) and performing several transformations yield(

−Ṁ(t) +A∗M(t) +M(t)A
T
∗ −D∗R

−1DT
∗ +M(t)CT

∗ QC∗M(t)
)
λ(t)

= ġ(t)−A∗g(t)− J∗y(t)−B∗u(t)−M(t)CT
∗ QC∗g(t) +M(t)CT

∗ Qy∗(t).

This relation must hold for any λ(t); hence, we obtain the equations

Ṁ(t) = A∗M(t) +M(t)A
T
∗ −D∗R

−1DT
∗ +M(t)CT

∗ QC∗M(t),

ġ(t) = A∗g(t) + J∗y(t) +B∗u(t) +M(t)CT
∗ QC∗g(t) −M(t)CT

∗ Qy∗(t).
(4.5)

For t = t0, it follows from (4.4) that z(t0) = M(t0)λ(t0) + g(t0). Since λ(t0) is unknown, the initial
conditions will be satisfied by letting M(t0) = 0 and z(t0) = g(t0). Substituting (4.4) into (4.3)
finally gives

w(t) = −R−1DT
∗ M

−1(t)(z(t) − g(t)). (4.6)

The ultimate expression for the desired observer has the form

ż(t) = A∗z(t)−D∗R
−1DT

∗ M
−1(t)(z(t) − g(t)) + J∗y(t) +B∗u(t),

z(t0) = Φx(t0),

yz(t) = C∗z(t).

(4.7)

Here, M(t) and g(t) are determined from equations (4.5) with the initial conditions M(t0) = 0 and
z(t0) = g(t0). On an infinite time interval, when system (3.1) is controllable and observable, the
solution of equation (4.5) will tend to the steady-state value M as t → ∞, which is the solution of
the algebraic equation [11–13]

A∗M +MA
T
∗ −D∗R

−1DT
∗ +MCT

∗ QC∗M = 0;

the function g(t) from the second equation in (4.5) will tend to the bounded solution g(t) of the
differential equation

ġ(t) = (A∗ +MCT
∗ QC∗)g(t) + J∗y(t) +B∗u(t)−MCT

∗ Qy∗(t) (4.8)

with the initial conditions g(t0) = z(t0). The desired observer on an infinite time interval takes the
form (4.7), where M(t) and g(t) are replaced by M and g(t).

The convergence of g(t) to the bounded solution g(t) is immediate from the following consider-
ations. Multiplying the equation for M (4.5) by −1 on the left and right and denoting P = −M ,
we obtain the Riccati equation, which typically arises in optimal estimation problems [14]. Under
the conditions R > 0, Q > 0, and the observability of system (3.1), the solution of this equation is
known to converge to the steady-state solution P representing the unique positive definite solution

of the algebraic Riccati equation A∗P + PA
T
∗ +D∗R−1DT

∗ − PCT
∗ QC∗P = 0, and A∗ − PCT

∗ QC∗
is a Hurwitz matrix. Thus, due to P > 0, P → P , and P = −M, we obtain M → M , M < 0, and
the matrix A∗ +MCT

∗ QC∗ will be Hurwitz as well. With the error eg(t) = g(t) − g(t), from (4.5)
and (4.8) it follows that ėg(t) = (A∗ +MCT

∗ QC∗)eg(t). Since A∗ +MCT
∗ QC∗ is a Hurwitz matrix,

we have eg(t) →0 and g(t) → g(t) as t → ∞.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023
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5. SIMULATION RESULTS

Let us construct an observer for a two-wheeled inverted pendulum (TWIP) robot with self-
balancing [15]. The kinematic diagram of this robot is shown in Fig. 1. The mathematical model
of the TWIP robot linearized at the equilibrium takes the form (1.1) with the following notations:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 a2 0 0 0
0 0 0 1 0 0
0 0 a4 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
b2 b2
0 0
b4 b4
0 0
b6 −b6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
b2
0
b4
0

−b6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, C =

⎛
⎜⎝ 1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎟⎠ ;

x = (xl ẋl ϑ ϑ̇ ψ ψ̇) and u = (TL TR) are the state and control vectors, respectively; TL and TR

are the left and right wheel torques, respectively; xl is the linear displacement; ϑ and ψ are the
pitch and heading angles, respectively; y = (xl ϑ ψ) is the system output; d(t) = T̃L is an unknown
additional torque applied to the left wheel to be determined; ρ(t) = T̃R is an unknown additional
torque applied to the right wheel. The coefficients a2, a4, b2, b4, and b6 can be found using the
expressions below [15]:

a2 = −m2
Bgl

2/μ1, a4 =

(
mB + 2mW +

2J

r2

)
mBgl/μ1,

b2 =
(
(I2 +mBl

2)/r +mBl
)
/μ1, b4 = −

(
mBl

r
+mB + 2mW +

2J

r2

)
/μ2,

b6 = − d

rμ2
,

μ1 =

(
mB + 2mW +

2J

r2

)
(I2 +mBl

2)−m2
Bl2,

μ2 = I3 + 2K∗ + 2

(
mW +

J

r2

)
d2.

The parameter values of the robot are combined in the table.

b3(I3)ˆ

c1

K
K

J

d

ˆ
c2̂

c3̂

xl
l

b1(I1)ˆ

b2(I2)

{B}

{C}

mW g

mW g

mB g

r xl
.

�
.

	
.

z

	

ˆ

Fig. 1. The kinematic configuration of a TWIP robot.
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Table

Notation Description Value

mB Weight of the pendulum body 45 kg

mW Wheel weight 2 kg

l Pendulum length 0.135 m

r Wheel radius 8 in

d Wheel-to-wheel spacing 0.6 m

I1, I2, I3 The moments of inertia of the pendulum body relative
to the axes X,Y, Z

1.9; 2.1; 1.6 kg*m2

K∗, J The moments of inertia of the pendulum wheels rela-
tive to the vertical axis and the wheel rotation axis

0.04; 0.02 kg*m2

To find the matrices of the reduced model (2.1), it is necessary to solve equation (2.5). For
k = 1, it takes the form

(−j1 r1 − j2 r2 − j3 r3 0) = 0,

where ji are elements of the vector J∗ = (j1 j2 j3) and ri are elements of the vector r = (r1 r2 r3).
Obviously, this equation possesses the trivial solution only. For k = 2, equation (2.5) takes the
form

(−j21 − j11 a2r1 − j22 + a4r2 − j12 − j23 − j31 0 b2r1 + b4r2 − b6r3) = 0,

where jik are elements of the matrix J∗ of dimensions 2× 3. In this case, the vector R∗ can be
chosen as R = (0 b6 b4); then the matrix J∗ becomes

J∗ =

(
0 0 0
0 a4b6 0

)
.

The next step is to find the matrices Φ and B∗ using the expressions (2.4) and (2.3):

Φ =

(
0 0 b6 0 b4 0

0 0 0 b6 0 b4

)
, B∗ = ΦB =

(
0 0

2a4b6 0

)
.

Thus, the reduced robot model (2.6), sensitive to the function d(t) and insensitive to the function
ρ(t), has the form

ẋ∗1(t) = x∗2(t) + k1r∗(t),

ẋ∗2(t) = a4b6y2(t) + 2a4b6TL(t) + k2r∗(t),

r∗(t) = b6y2(t) + b4y3(t)− x∗1(t).

The diagnostic observer for fault identification is given by (4.6)–(4.8), where R = 10−2, Q = 1020,
and K = (1 1)T . Figure 2 shows the structural diagram of this observer.

Assume that the fault (an additional moment applied to the left wheel) is a rectangular pulse
with a duration of 4 s that appears at t = 2.

Having adjusted the observer parameters, we obtain the identification result in Fig. 3. Clearly,
the observer design approach provides an acceptable result. In addition, the graphs of the model
state and observer states and observation errors can be found in Figs. 4 and 5, respectively.

Note that the quality of identification based on the optimal observer (4.6)–(4.8) depends on the
choice of the penalty matrices Q and R and the matrix K. When selecting them, it is recommended
to use the following considerations. The cross relations between the output and fault variables are
reflected in the off-diagonal elements of these matrices. In the absence of information on such

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023
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u(t)

y(t)
z(t)z(t)

S
1
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g(t)g(t)
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y*(t)
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�R 
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�
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Fig. 2. Structural diagram.
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Fig. 3. Operation of the observer under a rectangular pulse fault.

relations, the diagonal form of the matrix R is recommended. The same recommendation applies
to the matrix Q in the case of no cross relations between the observed outputs. If the resulting
fault estimate has a large value, it is required to reduce the corresponding diagonal elements of the
matrix R. Given large values of the residual e(t) = x∗(t)− z(t), the elements of the matrix Q must
be increased. The coefficients of the matrix K are assigned to ensure a higher performance of the
observer.
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Fig. 4. The graphs of system state and diagnostic observer.
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Fig. 5. The graphs of observation errors e(t) = x∗(t)− z(t).

6. CONCLUSIONS

In this paper, we have estimated (identified) faults in systems described by linear models with
constant coefficients under exogenous disturbances. In contrast to well-known methods based on
sliding mode observers, the approach developed above expands the class of systems for which iden-
tification can be performed: the method of constructing sliding mode observers imposes restrictions
on the systems for fault identification.
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